一、定義、應用及意義
因月球引力的變化引起潮汐現象,抄襲導致海水平面周期性地升降,因海水漲落及潮水流動所產生的能量成為潮汐能(tidal energy)。潮汐能是以勢能形態出現的海洋能,是指海水潮漲和潮落形成的水的勢能。
海洋的潮汐中蘊藏著巨大的能量。在漲潮的過程中,洶涌而來的海水具有很大的動能,而隨著海水水位的升高,就把海水的巨大動能轉化為勢能;在落潮的過程中,海水奔騰而去,水位逐漸降低,勢能又轉化為動能。潮汐能的能量與潮量和潮差成正比。或者說,與潮差的平方和水庫的面積成正比。和水利發電相比,潮汐能的能量密度低,相當于微水頭發電的水平。世界上潮差的較大值約為13~15m,但一般說來,平均潮差在3m以上就有實際應用價值。潮汐能是因地而異的,不同的地區常常有不同的潮汐系統,他們都是從深海潮波獲取能量,但具有各自獨特的特征。景觀抄襲很復雜,但對于任何地方的潮汐都可以進行準確預報。
潮汐能的利用方式主要是發電。潮汐發電是利用海灣、河口等有利地形,建筑水堤,形成水庫,以便于大量蓄積海水,并在壩中或壩旁建造水利發電廠房,通過水輪發電機組進行發電。只有出現大潮,能量集中時,并且在地理條件適于建造潮汐電站的地方,從潮汐中提取能量才有可能。雖然這樣的場所并不是到處都有,但世界各國都已選定了相當數量的適宜開發潮汐電站的站址。
發展像潮汐能這樣的新能源,可以間接使大氣中的CO2含量的增加速度減慢。潮汐是一種世界性的海平面周期性變化的現象,由于受月亮和太陽這兩個萬有引力源的作用,海平面每晝夜有兩次漲落。潮汐作為一種自然現象,為人類的航海、捕撈和曬鹽提供了方便,更值得指出的是,它還可以轉變成電能,給人帶來光明和動力。
二、發電原理及發電形式
潮汐發電與普通水利發電原理類似,通過出水庫,在漲潮時將海水儲存在水庫內,以勢能的形式保存,然后,在落潮時放出海水,利用高、低潮位之間的落差,推動水輪機旋轉,帶動發電機發電。差別在于海水與河水不同,蓄積的海水落差不大,但流量較大,并且呈間歇性,從而潮汐發電的水輪機結構要適合低水頭、大流量的特點。潮水的流動與河水的流動不同,它是不斷變換方向的,潮汐發電有以下三種形式:
(1)單池單向發電
(2)單池雙向發電
(3)雙池雙向發電
三、應用現狀與應用前景
到目前為止,由于常規電站廉價電費的競爭,建成投產的商業用潮汐電站不多。然而,由于潮汐能蘊藏量的巨大和潮汐發電的許多優點,人們還是非常重視對潮汐發電的研究和試驗。
據海洋學家計算,世界上潮汐能發電的資源量在10億千瓦以上,也是一個天文數字。潮汐能普查計算的方法是,首先選定適于建潮汐電站的站址,再計算這些地點可開發的發電裝機容量,疊加起來即為估算的資源量。
20世紀初,歐、美一些國家開始研究潮汐發電。第一座具有商業實用價值的潮汐電站是1967年建成的法國郎斯電站。該電站位于法國圣馬洛灣郎斯河口。郎斯河口最大潮差13.4米,平均潮差8米。一道750米長的大壩橫跨郎斯河。壩上是通行車輛的公路橋,壩下設置船閘、泄水閘和發電機房。郎斯潮汐電站機房中安裝有24臺雙向渦輪發電機,漲潮、落潮都能發電。總裝機容量24萬千瓦,年發電量5億多度,輸入國家電網。
1968年,前蘇聯在其北方摩爾曼斯克附近的基斯拉雅灣建成了一座800千瓦的試驗潮汐電站。1980年,加拿大在芬地灣興建了一座2萬干瓦的中間試驗潮汐電站。試驗電站、中試電站,那是為了興建更大的實用電站做論證和準備用的。
世界上適于建設潮汐電站的20幾處地方,都在研究、設計建設潮汐電站。其中包括:美國阿拉斯加州的庫克灣、加拿大芬地灣、英國塞文河口、阿根廷圣約瑟灣、澳大利亞達爾文范迪門灣、印度坎貝河口、俄羅斯遠東鄂霍茨克海品仁灣、韓國仁川灣等地。隨著技術進步,潮汐發電成本的不斷降低,進入2l世紀,將不斷會有大型現代潮汐電站建成使用。
我國潮汐能的理論蘊藏量達到1.1億千瓦,在我國沿海,特別是東南沿海有很多能量密度較高,平均潮差4~5m,最大潮差7~8m。其中浙江、福建兩省蘊藏量最大,約占全國的80.9%。我國的江夏潮汐實驗電站,建于浙江省樂清灣北側的江夏港,裝機容量3200kW,于1980年正式投入運行。
潮汐發電的主要研究與開發國家包括法國、前蘇聯、加拿大、中國和英國等,它是海洋能中技術最成熟和利用規模最大的一種。全世界潮汐電站的總裝機容量為265MW。
來源:百度
|